Determining the Validity of a QSAR Model - A Classification Approach

نویسندگان

  • Rajarshi Guha
  • Peter C. Jurs
چکیده

The determination of the validity of a QSAR model when applied to new compounds is an important concern in the field of QSAR and QSPR modeling. Various scoring techniques can be applied to specific types of models. We present a technique with which we can state whether a new compound will be well predicted by a previously built QSAR model. In this study we focus on linear regression models only, though the technique is general and could also be applied to other types of quantitative models. Our technique is based on a classification method that divides regression residuals from a previously generated model into a good class and bad class and then builds a classifier based on this division. The trained classifier is then used to determine the class of the residual for a new compound. We investigated the performance of a variety of classifiers, both linear and nonlinear. The technique was tested on two data sets from the literature and a hand built data set. The data sets selected covered both physical and biological properties and also presented the methodology with quantitative regression models of varying quality. The results indicate that this technique can determine whether a new compound will be well or poorly predicted with weighted success rates ranging from 73% to 94% for the best classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel QSAR Model for the Evaluation and Prediction of (E)-N’-Benzylideneisonicotinohydrazide Derivatives as the Potent Anti-mycobacterium Tuberculosis Antibodies Using Genetic Function Approach

Abstract A dataset of (E)-N’-benzylideneisonicotinohydrazide derivatives as a potent anti-mycobacterium tuberculosis has been investigated utilizing Quantitative Structure-Activity Relationship (QSAR) techniques. Genetic Function Algorithm (GFA) and Multiple Linear Regression Analysis (MLRA) were used to select the descriptors and to generate the correlation QSAR models that relate the Mi...

متن کامل

Rationalization of Physicochemical and Structural Requirement of Some Substituted 5-(Biphenyl-4-ylmethyl)Pyrazole as Angiotensin II Receptor Antagonist: A QSAR Approach

      A series of angiotensin II (A II) receptor antagonist of some substituted 5-(biphenyl-4-ylmethyl) pyrazole were subjected to QSAR analysis using Hansch and Fujita-Ban model, by using combination of thermodynamic, electronic, spatial descriptor and presence or absence of substituent respectively. Several QSAR model were obtained using stepwise regression analysis. Two models from both the ...

متن کامل

3D QSAR Studies of 1,3,4-oxadiazole derivatives as antimycobacterial agents

Recently several 1,3,4-oxadiazole derivatives were identified as potentially active antimycobacterial agents. Various 5-aryl-2-thio-1,3,4-oxadiazoles have been reported having good antimycobacterial activity against Mycobacterium tuberculosis H37Rv (ATCC 27294). In this paper we report 3D QSAR studies for the 41 molecules of 1,3,4-oxadiazoles by using k-Nearest Neighbor Molecular Field Analysis...

متن کامل

QSAR Modeling of COX-2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method

COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure–activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R2) of 0.972 and 0.531 for training and test groups, respectively. The quality of the mod...

متن کامل

Application of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives

Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 45 1  شماره 

صفحات  -

تاریخ انتشار 2005